Loading…

On Taylor-series expansion methods for the second kind integral equations

In this paper, we comment on the recent papers by Yuhe Ren et al. (1999) [1] and Maleknejad et al. (2006) [7] concerning the use of the Taylor series to approximate a solution of the Fredholm integral equation of the second kind as well as a solution of a system of Fredholm equations. The technique...

Full description

Saved in:
Bibliographic Details
Published in:Journal of computational and applied mathematics 2010-07, Vol.234 (5), p.1466-1472
Main Authors: Huabsomboon, Pallop, Novaprateep, Boriboon, Kaneko, Hideaki
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:In this paper, we comment on the recent papers by Yuhe Ren et al. (1999) [1] and Maleknejad et al. (2006) [7] concerning the use of the Taylor series to approximate a solution of the Fredholm integral equation of the second kind as well as a solution of a system of Fredholm equations. The technique presented in Yuhe Ren et al. (1999) [1] takes advantage of a rapidly decaying convolution kernel k ( | s − t | ) as | s − t | increases. However, it does not apply to equations having other types of kernels. We present in this paper a more general Taylor expansion method which can be applied to approximate a solution of the Fredholm equation having a smooth kernel. Also, it is shown that when the new method is applied to the Fredholm equation with a rapidly decaying kernel, it provides more accurate results than the method in Yuhe Ren et al. (1999) [1]. We also discuss an application of the new Taylor-series method to a system of Fredholm integral equations of the second kind.
ISSN:0377-0427
1879-1778
DOI:10.1016/j.cam.2010.02.023