Loading…
Positive constrained approximation via RBF-based partition of unity method
In this paper, we discuss the problem of constructing Radial Basis Function (RBF)-based Partition of Unity (PU) interpolants that are positive if data values are positive. More specifically, we compute positive local approximants by adding up several constraints to the interpolation conditions. This...
Saved in:
Published in: | Journal of computational and applied mathematics 2017-08, Vol.319, p.338-351 |
---|---|
Main Authors: | , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | In this paper, we discuss the problem of constructing Radial Basis Function (RBF)-based Partition of Unity (PU) interpolants that are positive if data values are positive. More specifically, we compute positive local approximants by adding up several constraints to the interpolation conditions. This approach, considering a global approximation problem and Compactly Supported RBFs (CSRBFs), has been previously proposed in Wu et al. (2010). Here, the use of the PU technique enables us to intervene only locally and as a consequence to reach a better accuracy. This is also due to the fact that we select the optimal number of positive constraints by means of an a priori error estimate and we do not restrict to the use of CSRBFs. Numerical experiments and applications to population dynamics are provided to illustrate the effectiveness of the method in applied sciences. |
---|---|
ISSN: | 0377-0427 1879-1778 |
DOI: | 10.1016/j.cam.2017.01.024 |