Loading…

Deflated preconditioned Conjugate Gradient methods for noise filtering of low-field MR images

We study efficient implicit methods to denoise low-field MR images using a nonlinear diffusion operator as a regularizer. This problem can be formulated as solving a nonlinear reaction–diffusion equation. After discretization, a lagged-diffusion approach is used which requires a linear system solve...

Full description

Saved in:
Bibliographic Details
Published in:Journal of computational and applied mathematics 2022-01, Vol.400, p.113730, Article 113730
Main Authors: Shan, Xiujie, van Gijzen, Martin B.
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:We study efficient implicit methods to denoise low-field MR images using a nonlinear diffusion operator as a regularizer. This problem can be formulated as solving a nonlinear reaction–diffusion equation. After discretization, a lagged-diffusion approach is used which requires a linear system solve in every nonlinear iteration. The choice of diffusion model determines the denoising properties, but it also influences the conditioning of the linear systems. As a solution method, we use Conjugate Gradient (CG) in combination with a suitable preconditioner and deflation technique. We consider four different preconditioners in combination with subdomain deflation. We evaluate the methods for four commonly used denoising operators: standard Laplace operator, two Perona–Malik type operators, and the Total Variation (TV) operator. We show that a Discrete Cosine Transform (DCT) preconditioner works best for problems with a slowly varying diffusion coefficient, while Jacobi preconditioning with subdomain deflation works best for a strongly varying diffusion, as happens for the TV operator. This research is part of a larger effort that aims to provide low-cost MR imaging capabilities for low-resource settings. We have evaluated the algorithms on low-field MRI images using inexpensive commodity hardware. With a suitable preconditioner for the chosen diffusion model, we are able to limit the time to denoise three-dimensional images of more than 2 million pixels to less than 15 s, which is fast enough to be used in practice.
ISSN:0377-0427
1879-1778
DOI:10.1016/j.cam.2021.113730