Loading…

On the approximation to fractional calculus operators with multivariate Mittag-Leffler function in the kernel

Several numerical techniques have been developed to approximate Riemann–Liouville (R - L) and Caputo fractional calculus operators. Recently linear positive operators have been started to use to approximate fractional calculus operators such as R - L, Caputo, Prabhakar and operators containing bivar...

Full description

Saved in:
Bibliographic Details
Published in:Journal of computational and applied mathematics 2025-01, Vol.454, p.116148, Article 116148
Main Author: Özarslan, Mehmet Ali
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:Several numerical techniques have been developed to approximate Riemann–Liouville (R - L) and Caputo fractional calculus operators. Recently linear positive operators have been started to use to approximate fractional calculus operators such as R - L, Caputo, Prabhakar and operators containing bivariate Mittag-Leffler functions. In the present paper, we first define and investigate the fractional calculus properties of Caputo derivative operator containing the multivariate Mittag-Leffler function in the kernel. Then we introduce approximating operators by using the modified Kantorovich operators for the approximation to fractional integral and Caputo derivative operators with multivariate Mittag-Leffler function in the kernel. We study the convergence properties of the operators and compute the degree of approximation by means of modulus of continuity and Hölder continuous functions. The obtained results corresponds to a large family of fractional calculus operators including R- L, Caputo and Prabhakar models.
ISSN:0377-0427
DOI:10.1016/j.cam.2024.116148