Loading…
A hybridizable discontinuous Galerkin method for the dual-porosity-Stokes problem
We introduce and analyze a hybridizable discontinuous Galerkin (HDG) method for the dual-porosity-Stokes problem. This coupled problem describes the interaction between free flow in macrofractures/conduits, governed by the Stokes equations, and flow in microfractures/matrix, governed by a dual-poros...
Saved in:
Published in: | Computers & mathematics with applications (1987) 2024-07, Vol.165, p.180-195 |
---|---|
Main Authors: | , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | We introduce and analyze a hybridizable discontinuous Galerkin (HDG) method for the dual-porosity-Stokes problem. This coupled problem describes the interaction between free flow in macrofractures/conduits, governed by the Stokes equations, and flow in microfractures/matrix, governed by a dual-porosity model. We prove that the HDG method is strongly conservative, well-posed, and give an a priori error analysis showing dependence on the problem parameters. Our theoretical findings are corroborated by numerical examples. |
---|---|
ISSN: | 0898-1221 1873-7668 |
DOI: | 10.1016/j.camwa.2024.04.004 |