Loading…
Dielectric synergistic gradient metamaterials enable exceptional ultra–wideband microwave absorption and antibacterial properties
Interface structure design and multi–component strategies for regulating electromagnetic parameters to achieve efficient microwave absorption remain a challenge. In this study, a composite film with a heterogeneous structure, PAN@PPy@Ti3C2Tx@GO (PPTG) was fabricated through electrospinning, in situ...
Saved in:
Published in: | Carbon (New York) 2025-01, Vol.232, p.119813, Article 119813 |
---|---|
Main Authors: | , , , , , , , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | Interface structure design and multi–component strategies for regulating electromagnetic parameters to achieve efficient microwave absorption remain a challenge. In this study, a composite film with a heterogeneous structure, PAN@PPy@Ti3C2Tx@GO (PPTG) was fabricated through electrospinning, in situ oxidative polymerization, and dip–coating processes, achieving excellent electromagnetic wave absorption and antibacterial properties. When the filler content is only 20 wt%, the PPTG film exhibits an ultra–wide bandwidth, with a minimum reflection loss value (RLmin) of −49.98 dB (2.2 mm, 16.72 GHz), and the maximum effective absorption bandwidth (EAB) reaches 8.0 GHz (2.5 mm). The outstanding absorption performance is attributed to quarter–wavelength theory, polarization, multiple reflections and scattering, impedance matching, metamaterial properties, quasi–antenna effect, conductive loss, and magnetic loss. Excitingly, the radar cross–section (RCS) of the PPTG film can be reduced by up to 25.72 dB•m2, indicating excellent radar stealth properties. Moreover, the PPTG film exhibits excellent antibacterial properties. This research, based on the MXene absorber, provides new insights into the development of lightweight, efficient, and antibacterial microwave–absorbing materials.
A composite film with a gradient layered heterogeneous structure exhibits metamaterial characteristic for microwave absorption. Additionally, the composite film demonstrates excellent radar stealth and antibacterial effects, highlighting its potential applications in military and biomedical fields. [Display omitted] |
---|---|
ISSN: | 0008-6223 |
DOI: | 10.1016/j.carbon.2024.119813 |