Loading…

Evidence of coal combustion contribution to ambient VOCs during winter in Beijing

Volatile organic compounds (VOCs) play ,an important role in ozone and secondary organic aerosol (SOA) formation, but VOCs sources during winter are not fully understood. To investigate VOCs sources during winter, mixing ratios of C2-C12 VOCs were measured at an urban site in Beijing from December 2...

Full description

Saved in:
Bibliographic Details
Published in:Chinese chemical letters 2013-09, Vol.24 (9), p.829-832
Main Authors: Wang, Ming, Shao, Min, Lu, Si-Hua, Yang, Yu-Dong, Chen, Wen-Tai
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:Volatile organic compounds (VOCs) play ,an important role in ozone and secondary organic aerosol (SOA) formation, but VOCs sources during winter are not fully understood. To investigate VOCs sources during winter, mixing ratios of C2-C12 VOCs were measured at an urban site in Beijing from December 29, 2011 to January 17, 2012. Correlation analysis of toluene to benzene and i-pentane to n-pentane suggest that coal combustion could also be an important source for VOCs besides vehicular emissions. Source apportionment results show that coal combustion and vehicular emissions contributed 28%-39% and 31%-45% to ambient VOCs during winter, respectively. Backward trajectory analyses demonstrated that contributions from the burning of coal were higher when air masses came from southern regions outside Beijing. Close attention should be paid to VOCs emissions from coal combustion in Beijing city and the vicinity to the South.
ISSN:1001-8417
1878-5964
DOI:10.1016/j.cclet.2013.05.029