Loading…
Modification of plasma protein for bioprinting via photopolymerization
Bioprinting is emerging as an advanced tool in tissue engineering. However, there is still a lack of bioinks able to form hydrogels with desirable bioactivities that support positive cell behaviors. In this study, modified plasma proteins capable of forming hydrogels with multiple biological functio...
Saved in:
Published in: | Chinese chemical letters 2024-08, Vol.35 (8), p.109260, Article 109260 |
---|---|
Main Authors: | , , , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | Bioprinting is emerging as an advanced tool in tissue engineering. However, there is still a lack of bioinks able to form hydrogels with desirable bioactivities that support positive cell behaviors. In this study, modified plasma proteins capable of forming hydrogels with multiple biological functions are developed as bioinks for digital light processing (DLP) printing. The Plasma-MA (BM) was synthesized via a one-pot method through the reaction between the fresh frozen plasma and methacrylic anhydride. The methacrylated levels were observed to influence the physical properties of BM hydrogels including mechanical properties, swelling, and degradation. The photo-crosslinked BM hydrogels can sustainedly release vascular endothelial growth factor (VEGF) and exhibit positive biological effects on cell adhesion and proliferation, and cell functionality such as tube formation of human umbilical vein endothelial cells (HUVECs), and neurite elongation of rat pheochromocytoma cells (PC12). Meanwhile, BM hydrogels can also induce cell infiltration, modulate immune response, and promote angiogenesis in vivo. Moreover, the plasma bioinks can be used to fabricate customized scaffolds with complex structures through a DLP printing process. These findings implicate that the modified plasma with growth factor release is a promising candidate for bioprinting in autologous and personalized tissue engineering.
Plasma methacryloyl (Plasma-MA) synthesized via a one-pot method can be printed into customized hydrogels through digital light processing (DLP) printing, and the hydrogels can release growth factors (GFs) to support positive cell behaviors
[Display omitted] |
---|---|
ISSN: | 1001-8417 1878-5964 |
DOI: | 10.1016/j.cclet.2023.109260 |