Loading…

Surface engineering of hollow carbon nitride microspheres for efficient photoredox catalysis

Novel hollow carbon nitride microspheres were fabricated and employed for the efficient photocatalytic degradation of p-hydroxybenonic and hydrogen evolution. [Display omitted] •Hollow carbon nitride microspheres (HCNMS) were designed and synthesized.•OH-HCNMS exhibited enhanced hydrogen evolution t...

Full description

Saved in:
Bibliographic Details
Published in:Chemical engineering journal (Lausanne, Switzerland : 1996) Switzerland : 1996), 2020-02, Vol.381, p.122593, Article 122593
Main Authors: Wang, Shuaijun, Zhao, Hongfei, Zhao, Xiaoli, Zhang, Jinqiang, Ao, Zhimin, Dong, Pei, He, Fengting, Wu, Hong, Xu, Xinyuan, Shi, Lei, Zhao, Chaocheng, Wang, Shaobin, Sun, Hongqi
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:Novel hollow carbon nitride microspheres were fabricated and employed for the efficient photocatalytic degradation of p-hydroxybenonic and hydrogen evolution. [Display omitted] •Hollow carbon nitride microspheres (HCNMS) were designed and synthesized.•OH-HCNMS exhibited enhanced hydrogen evolution than pristine C3N4 at 420 nm.•HCNMS exhibited 4.3 times faster degradation of organics than pristine C3N4.•The modified LUMO orbital configuration was favorable for electron-hole separation. Photocatalysis has attracted extensive interests because of the potential applications in remedying emerging contaminants and easing ever-increasing energy crisis. Towards practical applications of photocatalysis, exploring competing semiconductor materials is a critical challenge. Herein, hollow carbon nitride microspheres (HCNMS) were synthesized via a template-free hydrothermal approach, in which OH groups (OH-HCNMS) were used for further tuning the surface features. Their properties were thoroughly investigated by a number of advanced characterization methods. The as-prepared HCNMS achieved an impressive p-hydroxybenzoic acid (HBA) degradation rate of 0.013 min−1, which was 4.3 times higher than pristine carbon nitride (C3N4), even higher than some heterostructured or noble metal modified C3N4. The enhanced photooxidation activity of HCNMS was achieved because of the optimized band structure and the deepened valence band edge, as unveiled by both experimental and density functional theory (DFT) calculation results. In addition, OH-HCNMS exhibited an apparent quantum efficiency (AQE) of 3.7% at 420 nm. The improved hydrogen efficiency of OH-HCNMS was ascribed to the surface functionalized OH groups, which react with holes, and release more electrons to participate the water splitting, as well as the modified orbital configuration which facilitates the faster charge carrier transfer.
ISSN:1385-8947
1873-3212
DOI:10.1016/j.cej.2019.122593