Loading…
Integrations of desulfurization, carbon capture, and methanation at an isothermal intermediate temperature
[Display omitted] •Integrations of SO2 removal, CO2 capture, and methanation are developed.•100% removals of SO2 and CO2, 93.6% CO2 conversion after 20 cycles are achieved.•In-situ STEM records the dynamic evolution of CO2 adsorption on AMS-MgO pellets.•An isothermal two columns system with dual-bed...
Saved in:
Published in: | Chemical engineering journal (Lausanne, Switzerland : 1996) Switzerland : 1996), 2024-01, Vol.479, p.147006, Article 147006 |
---|---|
Main Authors: | , , , , , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | [Display omitted]
•Integrations of SO2 removal, CO2 capture, and methanation are developed.•100% removals of SO2 and CO2, 93.6% CO2 conversion after 20 cycles are achieved.•In-situ STEM records the dynamic evolution of CO2 adsorption on AMS-MgO pellets.•An isothermal two columns system with dual-bed mode is constructed.•Dynamic matching among ZnO-CaO, AMS-MgO, and Ni-La/Al2O3 pellets is realized.
Integrated CO2 capture and conversion (iCCC) technology has been recognized as the most efficient technology for Carbon Capture, Utilization, and Storage (CCUS). However, its industrialization is hindered by some unsolved engineering problems. Typically, sulfur impurities in most industrial flue gas will have significant poisoning effects on the process. Herein, we report integrations of SO2 removal, CO2 capture and conversion (iSCCC) at an isothermal intermediate temperature in a two-fixed-bed column system. By rationally developing the SO2 adsorbent pellets of ZnO-CaO, the CO2 adsorbent pellets of AMS-MgO, and the methanation catalyst pellets of Ni-La/Al2O3, each individual unit is optimized. Specifically, the in-situ dynamic structure evolution observed by the atmospheric aberration-corrected scanning transmission electron microscopy as well as the theoretical dynamics calculation provide an in-depth understanding of the CO2 adsorption and desorption performance changing with the temperature on the AMS-MgO pellets, which builds a bridge for a successful 99.3 % CO2 methanation efficiency. As a result, the matched iSCCC process demonstrates exceptional performance from simulated flue gas containing 1000 ppm SO2 and 20 vol% CO2, with full desulfurization and decarbonation and a CO2 conversion efficiency of 93.6 % after 20 cycles isothermally at 400 °C, superior to all the reported performance so far as we know, providing a promising route to practical large-scale iSCCC towards carbon neutrality. |
---|---|
ISSN: | 1385-8947 1873-3212 |
DOI: | 10.1016/j.cej.2023.147006 |