Loading…
Self-propagating high-temperature synthesis of advanced ceramics MoSi2–HfB2–MoB
This study focuses on the investigation of the macrokinetic features of SHS (combustion synthesis) of elemental mixtures Mo–Hf–Si–B, in particular the mechanisms of structure and phase formation in the combustion front as well as the structure and properties of consolidated ceramics. Two routes for...
Saved in:
Published in: | Ceramics international 2019-01, Vol.45 (1), p.96-107 |
---|---|
Main Authors: | , , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | This study focuses on the investigation of the macrokinetic features of SHS (combustion synthesis) of elemental mixtures Mo–Hf–Si–B, in particular the mechanisms of structure and phase formation in the combustion front as well as the structure and properties of consolidated ceramics. Two routes for the fabrication of the composite SHS powder in system MoSi2–HfB2–MoB were used: (1) synthesis using Mo–Si–B and Hf–B mixtures followed by mixing of the combustion products and (2) synthesis using the four-component Mo–Hf–Si–B mixture. Dense ceramic samples with a homogeneous structure and low residual porosity (0.8–3.6%) were prepared by hot pressing of SHS powders. Although the particles size distribution and phase composition of SHS powders are similar for both synthesis routes, the structure and properties of both the composite SHS powders and hot-pressed ceramics differ considerably. Synthesis using the four-component Mo–Hf–Si–B mixture allows one to produce hierarchically ordered nanocomposite material with improved mechanical properties: hardness up to 17.6 GPa and fracture toughness up to 7.16 MPa m1/2. |
---|---|
ISSN: | 0272-8842 1873-3956 |
DOI: | 10.1016/j.ceramint.2018.09.138 |