Loading…
Rapid preparation and performances of garnet electrolyte with sintering aids for solid-state Li–S battery
Lithium-sulfur (Li–S) batteries are attractive due to their high theoretical energy density. However, conventional Li–S batteries with liquid electrolytes undergo polysulfide shuttle-effect and lithium dendrite formation during charge/discharge process, leading to poor electrochemical performance an...
Saved in:
Published in: | Ceramics international 2021-07, Vol.47 (13), p.18196-18204 |
---|---|
Main Authors: | , , , , , , , , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | Lithium-sulfur (Li–S) batteries are attractive due to their high theoretical energy density. However, conventional Li–S batteries with liquid electrolytes undergo polysulfide shuttle-effect and lithium dendrite formation during charge/discharge process, leading to poor electrochemical performance and safety issues. Garnet type Li7La3Zr2O12 (LLZO) solid-state electrolyte (SSE) restricts the penetration of polysulfides and exhibits high ionic conductivity at room temperature (RT). Herein, Li6.5La3Zr1.5Nb0.5O12 (LLZNO) ceramic electrolyte using Li3PO4 (LPO) as sintering aids (LLZNO-LPO) is prepared by the rapid sintering method and is applied to construct a shuttle-effect free solid-state Li–S battery. The SSE displays high conductive pure cubic-LLZO phase; during the rapid sintering, LPO melts and junctions the voids between the grains, thus improves Li+ conductivity. As a result, the LLZNO-LPO ceramic electrolyte with Li+ conductivity of 4.3 × 10−4 S cm−1 and high critical current density (CCD) of 1.2 mA cm−2 is obtained at RT. The Li–S solid-state battery which utilizes LLZNO-LPO ceramic electrolyte can deliver an initial discharge capacity of 943 mA h·g−1 and 602 mA h·g−1 retention after 60 cycles. In the same time, the initial coulombic efficiency is as high as 99.5%, indicating that the SSE can effectively block the polysulfide shuttle towards the Li anode and fulfill a shuttle-free Li–S battery. |
---|---|
ISSN: | 0272-8842 1873-3956 |
DOI: | 10.1016/j.ceramint.2021.03.138 |