Loading…
Impact of Zn doping on the dielectric and magnetic properties of CoFe2O4 nanoparticles
Owing to its unique magnetic, dielectric, electrical and catalytic properties, ferrite nanostructure materials gain vital importance in high frequency, memory, imaging, sensor, energy and biomedical applications. Doping is one of the strategies to manipulate the spinel ferrite structure, which could...
Saved in:
Published in: | Ceramics international 2022-11, Vol.48 (22), p.33208-33218 |
---|---|
Main Authors: | , , , , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | Owing to its unique magnetic, dielectric, electrical and catalytic properties, ferrite nanostructure materials gain vital importance in high frequency, memory, imaging, sensor, energy and biomedical applications. Doping is one of the strategies to manipulate the spinel ferrite structure, which could alter the physico-chemical properties. In the present work, Co1-xZnxFe2O4 (x = 0, 0.1, 0.2, 0.3, and 0.4 wt%) nanoparticles were prepared by sol-gel auto-combustion method and its structural, morphological, vibrational, optical, electrical and magnetic properties were studied. The structural analysis affirms the single-phase cubic spinel structure of CoFe2O4. The crystallite size, lattice constant, unit cell, X-ray density, dislocation density and hopping length were significantly varied with Zn doping. The Fe–O stretching vibration was estimated by FTIR and Raman spectra. TEM micrographs show the agglomerated particles and it size varies between 10 and 56 nm. The Hall effect measurement shows the switching of charge carriers from n to p type. The dielectric constant (ε′) varies from 0.2 × 103 to 1.2 × 103 for different Zn doping. The VSM analysis shows relatively high saturation magnetization of 57 and 69 emu/g for ZC 0.1 and ZC 0.2 samples, respectively than that of undoped sample. All the prepared samples exhibit soft magnetic behaviour. Hence, it can be realized that the lower concentration of Zn ion doping significantly alters the magnetic properties of CoFe2O4 through variation in the cationic distribution and exchange interaction between the Co and Fe sites of the inverse spinel structure of CoFe2O4. |
---|---|
ISSN: | 0272-8842 1873-3956 |
DOI: | 10.1016/j.ceramint.2022.07.263 |