Loading…
Alumina/molybdenum nanocomposites obtained by colloidal synthesis and spark plasma sintering
Alumina/molybdenum nanocomposites were prepared by colloidal synthesis from alumina powder and molybdenum (V) chloride using ethanol as dispersion medium. Modified alumina was calcined at 450 °C in air atmosphere to remove chlorides, and then treated in a tubular furnace at 850 °C under Ar/H2 to red...
Saved in:
Published in: | Ceramics international 2023-03, Vol.49 (6), p.9432-9441 |
---|---|
Main Authors: | , , , , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | Alumina/molybdenum nanocomposites were prepared by colloidal synthesis from alumina powder and molybdenum (V) chloride using ethanol as dispersion medium. Modified alumina was calcined at 450 °C in air atmosphere to remove chlorides, and then treated in a tubular furnace at 850 °C under Ar/H2 to reduce the MoO3 formed in the previous stage and obtain Al2O3 with molybdenum nanoparticles on the surface. Three different molybdenum contents were proposed (1, 5 and 10 wt % Mo), and pure alumina was used as reference, that were sintered by spark plasma sintering (SPS) under vacuum atmosphere at 1400 °C for 3 min with an applied pressure of 80 MPa. Composites were characterized by microstructure, hardness, toughness, and three-point bending test. The presence of molybdenum nanoparticles resulted in a fine-grained structure promoted by the presence of molybdenum at grain boundaries and triple points, as well as by the utilization of the SPS equipment. Hardness is at least a 20% greater and fracture toughness 30% larger in the composites than in the monolithic alumina. |
---|---|
ISSN: | 0272-8842 1873-3956 |
DOI: | 10.1016/j.ceramint.2022.11.108 |