Loading…

Constructing bilayer sensors with Co-MOF-derived Co3O4 porous sensing films and SnO2 catalytic overlayers to enhance room-temperature triethylamine sensing performance

Gas sensors with good repeatability and controllable fabrication method are extremely desired for practical applications. Co-MOF-derived Co3O4 is a promising gas-sensing material candidate because of its large surface area, ultrahigh porosities, and abundant oxygen defects. However, the advantages o...

Full description

Saved in:
Bibliographic Details
Published in:Ceramics international 2023-07, Vol.49 (13), p.21455-21464
Main Authors: Chen, Xuehua, Qin, Chao, Zheng, Zicheng, Chi, Hanwen, Ye, Zhizhen, Zhu, Liping
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:Gas sensors with good repeatability and controllable fabrication method are extremely desired for practical applications. Co-MOF-derived Co3O4 is a promising gas-sensing material candidate because of its large surface area, ultrahigh porosities, and abundant oxygen defects. However, the advantages of Co-MOF precursor were limited by the traditional sensor fabrication methods. Moreover, the high resistance and poor surface activity of Co3O4 resulted in low gas-sensing performance at room temperature (RT). To overcome these challenges, in-situ sensors based on Co3O4 porous films with controlled nanoscale thickness were directly prepared on ceramic substrates by using Co-MOF films as precursors. To further improve the conductivity, SnO2 catalytic overlayers were introduced on top of Co3O4 sensors to construct SnO2/Co3O4 bilayer sensors, which were promising for triethylamine (TEA) detection at RT. As a result, the optimized SnO2/Co3O4 sensor exhibited a fast response/recovery rate (11 s/16 s), high selectivity, and a satisfactory sensitivity (150%) to TEA at RT. The enhanced gas-sensing performance could be attributed to the unique bilayer structures, improved conductivity, and synergistic effects of the SnO2 catalytic overlayers and Co3O4 sensing layers.
ISSN:0272-8842
DOI:10.1016/j.ceramint.2023.03.276