Loading…

Development of a predictive response surface model for size of silver nanoparticles synthesized in a T-junction microfluidic device

•Pairing microfluidics and design of experiments for sustainable synthesis of AgNPs.•DoE helps link chemical and hydrodynamic parameters to final properties of AgNPs.•Microfluidics provide an efficient method for a controlled formation of AgNPs. Optimisation of the parameters governing the synthesis...

Full description

Saved in:
Bibliographic Details
Published in:Chemical engineering science 2023-09, Vol.279, p.118907, Article 118907
Main Authors: Nathanael, Konstantia, Galvanin, Federico, Kovalchuk, Nina M., Simmons, Mark J.H.
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:•Pairing microfluidics and design of experiments for sustainable synthesis of AgNPs.•DoE helps link chemical and hydrodynamic parameters to final properties of AgNPs.•Microfluidics provide an efficient method for a controlled formation of AgNPs. Optimisation of the parameters governing the synthesis of silver nanoparticles (AgNPs) is a critical step in controlling particle size, which facilitates their application in diverse range of industrial and consumer related products. AT-junctionmicrofluidicsystemwas used together with design of experiments, regression-analysis and response surface methodology to build a predictive numerical model for the size of silver nanoparticles (AgNPs). Aqueous solutions of silver-precursor and reducing/stabilizing agent were supplied by two separate channels meeting at the T-junction, withthereaction occurring downstream intheoutlet tube. To improve the mixingof the reagents,the output tube was coiled onto a 3D-printed helical shape device, exploiting the creation of Dean vortices. The effects of both reaction and hydrodynamic conditions including the solution pH, collection temperature, helical curvature, flow rates and concentration of stabilising agent were investigated using a D-optimal experimental design. The obtainedexperimental size distributions for the AgNPs were fittedtoa polynomial model with an average prediction error of around 13% and a 37 % maximum error.The modelpredictedthe optimal synthesis conditionsforthe global and local-minimum sizes of AgNPswith an errorof around 7.0% and 16.1% respectively. The average prediction error of the testing set was estimated to be 6.8% with 16.1% being the maximum error.
ISSN:0009-2509
DOI:10.1016/j.ces.2023.118907