Loading…

Cryptography based on chaotic random maps with position dependent weighting probabilities

Chaotic cryptology has been widely investigated recently. A common feature in the most recent developments of chaotic cryptosystems is the use of a single dynamical rule in the encoding–decoding process. The main objective of this paper is to provide a set of chaotic systems instead of a single one...

Full description

Saved in:
Bibliographic Details
Published in:Chaos, solitons and fractals solitons and fractals, 2009-04, Vol.40 (1), p.362-369
Main Authors: Behnia, S., Akhshani, A., Ahadpour, S., Akhavan, A., Mahmodi, H.
Format: Article
Language:English
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:Chaotic cryptology has been widely investigated recently. A common feature in the most recent developments of chaotic cryptosystems is the use of a single dynamical rule in the encoding–decoding process. The main objective of this paper is to provide a set of chaotic systems instead of a single one for cryptography. In this paper, we introduce a chaotic cryptosystem based on the symbolic dynamics of random maps with position dependent weighting probabilities. The random maps model is a deterministic dynamical system in a finite phase space with n points. The maps that establish the dynamics of the system are chosen randomly for every point. The essential idea of this paper is that, given two dynamical systems that behave in a certain way, it is possible to combine them (by composing) into a new dynamical system. This dynamically composed system behaves in a completely different way compared to the constituent systems. The proposed scheme exploits the symbolic dynamics of a set of chaotic maps in order to encode the binary information. The performance of the new cryptosystem based on chaotic dynamical systems properties is examined. Both theoretical and experimental results demonstrate that the proposed algorithm using symbolic dynamics achieves the optimal security criteria.
ISSN:0960-0779
1873-2887
DOI:10.1016/j.chaos.2007.07.070