Loading…

Multiple access multicarrier continuous-variable quantum key distribution

One of the most important practical realizations of the fundamentals of quantum mechanics is continuous-variable quantum key distribution (CVQKD). Here we propose the adaptive multicarrier quadrature division–multiuser quadrature allocation (AMQD–MQA) multiple access technique for continuous-variabl...

Full description

Saved in:
Bibliographic Details
Published in:Chaos, solitons and fractals solitons and fractals, 2018-09, Vol.114, p.491-505
Main Authors: Gyongyosi, Laszlo, Imre, Sandor
Format: Article
Language:English
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:One of the most important practical realizations of the fundamentals of quantum mechanics is continuous-variable quantum key distribution (CVQKD). Here we propose the adaptive multicarrier quadrature division–multiuser quadrature allocation (AMQD–MQA) multiple access technique for continuous-variable quantum key distribution. The MQA scheme is based on the AMQD modulation, which granulates the inputs of the users into Gaussian subcarrier continuous-variables (CVs). In an AMQD–MQA multiple access scenario, the simultaneous reliable transmission of the users is handled by the dynamic allocation of the Gaussian subcarrier CVs. We propose two different settings of AMQD–MQA for multiple input-multiple output communication. We introduce a rate-selection strategy that tunes the modulation variances and allocates adaptively the quadratures of the users over the sub-channels. We also prove the rate formulas if only partial channel side information is available for the users of the sub-channel conditions. We show a technique for the compensation of a nonideal Gaussian input modulation, which allows the users to overwhelm the modulation imperfections to reach optimal capacity-achieving communication over the Gaussian sub-channels. We investigate the diversity amplification of the sub-channel transmittance coefficients and reveal that a strong diversity can be exploited by opportunistic Gaussian modulation.
ISSN:0960-0779
1873-2887
DOI:10.1016/j.chaos.2018.07.006