Loading…

Atmospheric carbon sequestration in ultramafic mining residues and impacts on leachate water chemistry at the Dumont Nickel Project, Quebec, Canada

Passive carbon mineralization in ultramafic mining residues, which allows the sequestration of CO2 through carbonate precipitation, is one of the options being considered to limit the accumulation of anthropogenic CO2 in the atmosphere. The Dumont Nickel Project (DNP) will generate approximately 1.7...

Full description

Saved in:
Bibliographic Details
Published in:Chemical geology 2020-07, Vol.546, p.119661, Article 119661
Main Authors: Gras, A., Beaudoin, G., Molson, J., Plante, B.
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:Passive carbon mineralization in ultramafic mining residues, which allows the sequestration of CO2 through carbonate precipitation, is one of the options being considered to limit the accumulation of anthropogenic CO2 in the atmosphere. The Dumont Nickel Project (DNP) will generate approximately 1.7 Gt of utramafic mining residues over 33 years of production and the mine will release about 127,700 tonnes of CO2 each year. Using two experimental cells filled with ultramafic waste rock (EC-1) and milling residues (EC-2), the impacts of carbon mineralization on leachate water quality were studied and the quantity of sequestered carbon was estimated. Hydrotalcite supergroup minerals, aragonite, artinite, nesquehonite, dypingite and hydromagnesite precipitated through atmospheric weathering, while the inorganic carbon content of the weathered mining waste increased from 0.1 wt% to 4.0 wt%, which indicates active CO2 sequestration. The leachate water, sampled at the bottom of the experimental cells, is characterized by an alkaline pH (~9.5), a high alkalinity (~90 to ~750 mg/L) and a high concentration of magnesium (~50–~750 mg/L), which is typical from weathering of ultramafic rocks in a system open to CO2. Since 2012, the chemical composition of the leachate water has evolved seasonally. These seasonal variations are best explained by: (1) climatic variations over the year and, (2) increased carbonate precipitation between May and July. Increased carbonate precipitation decreased the alkalinity and magnesium concentrations in the leachate water and produced pore waters which were undersaturated with respect to carbonate minerals such as artinite and hydromagnesite. Carbonate precipitation thus self-limits carbon sequestration through a negative feed-back loop. The carbon sequestration potential of the DNP residues is also influenced by the hydrogeological properties of the residues. In cell EC-2, a high liquid/solid ratio, which limits carbonate precipitation, was maintained by the hydrogeological properties. Since 2011, an estimate of 13 kg of atmospheric CO2 has been sequestered in the milling residues (EC-2), which corresponds to a mean rate of 1.4 (±0.3) kgCO2/tonne/year. Using this mean rate, the 15 Mt of tailings produced each year, during the planned 33 years of mining operation, could potentially sequester 21,000 tonnes of CO2 per year by passive carbon mineralization, about 16% of the 127,700 tonnes of CO2 annually emitted by the planned mining operat
ISSN:0009-2541
1872-6836
DOI:10.1016/j.chemgeo.2020.119661