Loading…

Variations of DOM quantity and compositions along WWTPs-river-lake continuum: Implications for watershed environmental management

Wastewater effluent makes up an increasingly large percentage of surface water supplies, but the impacts of discharge of effluent organic matter (EfOM) on receiving riverine and lacustrine dissolved organic matter (DOM) is still largely unknown. In the present study, we investigated variations of DO...

Full description

Saved in:
Bibliographic Details
Published in:Chemosphere (Oxford) 2019-03, Vol.218, p.468-476
Main Authors: Wang, Yulai, Hu, Yunyun, Yang, Changming, Wang, Qiongjie, Jiang, Degang
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:Wastewater effluent makes up an increasingly large percentage of surface water supplies, but the impacts of discharge of effluent organic matter (EfOM) on receiving riverine and lacustrine dissolved organic matter (DOM) is still largely unknown. In the present study, we investigated variations of DOM quantity and quality along wastewater treatment plants (WWTPs)-river-lake continuum during drought periods, and made a tentative discussion on its implications for watershed environmental management. We used dissolved organic carbon (DOC) concentrations, UV absorption coefficients and excitation-emission-matrixs (EEMs) fluorescence spectroscopy combined with fluorescence regional integration (FRI) to characterize EfOM and riverine and lacustrine DOM along WWTPs-river-Chaohu Lake continuum. Our results showed that changes in DOM quantity and quality in receiving waterbodies were related to EfOM discharged from WWTPs and external input of DOM along inflowing river. Specifically, we found that the ratio of protein-like/humic-like notably decreased (P 
ISSN:0045-6535
1879-1298
DOI:10.1016/j.chemosphere.2018.11.037