Loading…

Learning a data-dependent kernel function for KPCA-based nonlinear process monitoring

Kernel principal component analysis (KPCA)-based process monitoring methods have recently shown to be very effective for monitoring nonlinear processes. However, their performances largely depend on the kernel function and currently there is no general rule for kernel selection. Existing methods sim...

Full description

Saved in:
Bibliographic Details
Published in:Chemical engineering research & design 2009-11, Vol.87 (11), p.1471-1480
Main Authors: Shao, Ji-Dong, Rong, Gang, Lee, Jong Min
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:Kernel principal component analysis (KPCA)-based process monitoring methods have recently shown to be very effective for monitoring nonlinear processes. However, their performances largely depend on the kernel function and currently there is no general rule for kernel selection. Existing methods simply choose the kernel function empirically or experimentally from a given set of candidates. This paper proposes a kernel function learning method for KPCA to learn a kernel function tailored to specific data and explores its potential for KPCA-based process monitoring. Motivated by the manifold learning method maximum variance unfolding (MVU), we obtain the kernel function by optimizing over a family of data-dependent kernels such that the nonlinear structure in input data is unfolded in the kernel feature space and gets more likely to be linear there. Using the optimized kernel, the nonlinear principal components of KPCA which are linear principal components in the kernel feature space can effectively capture the variation in data, and thus the data under normal operating conditions can be more precisely modeled by KPCA for process monitoring. Simulation results on an simple nonlinear system and the benchmark Tennessee Eastman (TE) demonstrate that the optimized kernel functions lead to significant improvement in the performance over the popular Gaussian kernels when used in the KPCA-based process monitoring.
ISSN:0263-8762
DOI:10.1016/j.cherd.2009.04.011