Loading…
Zn-decorated S,P,B co-doped C2N nanosheet for ibuprofen adsorption: Experimental and density functional theory calculation
Co-doping and decoration methods were simultaneously employed to enhance the adsorption capability of C2N nanosheet for Ibuprofen (IB) removal, as demonstrated through an experimental study and density functional theory (DFT) calculations. Nonmetal atoms (S, P, and B) were successfully co-doped into...
Saved in:
Published in: | Colloids and surfaces. A, Physicochemical and engineering aspects Physicochemical and engineering aspects, 2024-01, Vol.680, p.132702, Article 132702 |
---|---|
Main Authors: | , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | Co-doping and decoration methods were simultaneously employed to enhance the adsorption capability of C2N nanosheet for Ibuprofen (IB) removal, as demonstrated through an experimental study and density functional theory (DFT) calculations. Nonmetal atoms (S, P, and B) were successfully co-doped into the C2N nanosheet. Then, the S,P,B co-doped C2N (SPB@C2N) nanosheet was decorated using a Zn atom to enhance the IB adsorption ability of the SPB@C2N nanosheet. The adsorption capabilities of Zn-decorated SPB@C2N (Zn-SPB@C2N), SPB@C2N, and C2N nanosheets were evaluated to recognize the most effective adsorbent for IB removal. Zn-SPB@C2N had a higher adsorption capacity (257.31 mg/g) than SPB@C2N (114.07 mg/g) and C2N (92.96 mg/g). In contrast to other nanosheets that formed hydrogen bonds with the IB structure, the Zn-SPB@C2N nanosheet strongly interacted with the IB structure by forming a covalent bond. The Zn-SPB@C2N nanosheet revealed a much lower band structure (0.01 eV) compared to the SPB@C2N (0.39 eV) and C2N (1.53 eV) nanosheets. This feature highlights the ability of the Zn-SPB@C2N nanosheet to function as an exceptional adsorbent with excellent chemical reactivity for water treatment.
[Display omitted] |
---|---|
ISSN: | 0927-7757 1873-4359 |
DOI: | 10.1016/j.colsurfa.2023.132702 |