Loading…
Characteristics of ammonia-hydrogen nonpremixed bluff-body-stabilized flames
The combustion of ammonia (NH3) has received much attention over the last few years due to challenges associated with its low reactivity and the emission of nitric oxides. One way to improve the reactivity of NH3 is to blend it with (H2/N2) mixture as the product of its dissociation, before introduc...
Saved in:
Published in: | Combustion and flame 2023-12, Vol.258, p.113066, Article 113066 |
---|---|
Main Authors: | , , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | The combustion of ammonia (NH3) has received much attention over the last few years due to challenges associated with its low reactivity and the emission of nitric oxides. One way to improve the reactivity of NH3 is to blend it with (H2/N2) mixture as the product of its dissociation, before introducing it into energy systems. In this study, experimental measurements were carried out on nonpremixed bluff-body stabilized flames to better understand the flame and emission characteristics of NH3/H2/N2 flames. Four fuel mixtures at different NH3 and (H2/N2) ratios were investigated to represent different levels of ammonia cracking. Photography, planar laser-induced fluorescence of OH, thermocouples, and gas analysis techniques were used to understand flame features, reaction zone characteristics, NO, and NH3 concentration within the flame and at the exhaust. It was observed that a decrease in NH3 ratio in the mixtures resulted in longer and more stable flame with reduced thermal radiation as compared to NH3-rich fuel blends. For the highest NH3 blend studied, the flames exhibit extinction and re-ignition in the neck zone, as evidenced by OH-planar images and temperature profiles. As the H2/N2 ratio in the fuel mixture is increased, while keeping the Re constant, the momentum flux ratio (jet/co-flow) also increased resulting in a fuel-lean recirculation zone (RZ), and a shift in the maximum temperature and OH region from the outer shear layer to the inner layer next to the central jet. At levels of NH3 in the fuel mixture above 50% by volume, unburned ammonia slips through the flame and into the exhaust, and the subsequent reburn mechanism resulted in reduced NO emission. CFD simulations using Reynolds-averaged Navier-Stokes (RANS) and the flamelet–progress-variable submodel were conducted and compared with the experimental results. The CFD results helped to qualitatively describe and further explain what was observed in the experiment including the flame appearance, mixing field, and the reaction zone location in the tested flames. |
---|---|
ISSN: | 0010-2180 |
DOI: | 10.1016/j.combustflame.2023.113066 |