Loading…

Deep reinforcement learning meets graph neural networks: Exploring a routing optimization use case

Deep Reinforcement Learning (DRL) has shown a dramatic improvement in decision-making and automated control problems. Consequently, DRL represents a promising technique to efficiently solve many relevant optimization problems (e.g., routing) in self-driving networks. However, existing DRL-based solu...

Full description

Saved in:
Bibliographic Details
Published in:Computer communications 2022-12, Vol.196, p.184-194
Main Authors: Almasan, Paul, Suárez-Varela, José, Rusek, Krzysztof, Barlet-Ros, Pere, Cabellos-Aparicio, Albert
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:Deep Reinforcement Learning (DRL) has shown a dramatic improvement in decision-making and automated control problems. Consequently, DRL represents a promising technique to efficiently solve many relevant optimization problems (e.g., routing) in self-driving networks. However, existing DRL-based solutions applied to networking fail to generalize, which means that they are not able to operate properly when applied to network topologies not observed during training. This lack of generalization capability significantly hinders the deployment of DRL technologies in production networks. This is because state-of-the-art DRL-based networking solutions use standard neural networks (e.g., fully connected, convolutional), which are not suited to learn from information structured as graphs. In this paper, we integrate Graph Neural Networks (GNN) into DRL agents and we design a problem specific action space to enable generalization. GNNs are Deep Learning models inherently designed to generalize over graphs of different sizes and structures. This allows the proposed GNN-based DRL agent to learn and generalize over arbitrary network topologies. We test our DRL+GNN agent in a routing optimization use case in optical networks and evaluate it on 180 and 232 unseen synthetic and real-world network topologies respectively. The results show that the DRL+GNN agent is able to outperform state-of-the-art solutions in topologies never seen during training.
ISSN:0140-3664
1873-703X
DOI:10.1016/j.comcom.2022.09.029