Loading…
Largest bounding box, smallest diameter, and related problems on imprecise points
Imprecision of input data is one of the main obstacles that prevent geometric algorithms from being used in practice. We model an imprecise point by a region in which the point must lie. Given a set of imprecise points, we study computing the largest and smallest possible values of various basic geo...
Saved in:
Published in: | Computational geometry : theory and applications 2010-05, Vol.43 (4), p.419-433 |
---|---|
Main Authors: | , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | Imprecision of input data is one of the main obstacles that prevent geometric algorithms from being used in practice. We model an imprecise point by a region in which the point must lie. Given a set of imprecise points, we study computing the largest and smallest possible values of various basic geometric measures on point sets, such as the diameter, width, closest pair, smallest enclosing circle, and smallest enclosing bounding box. We give efficient algorithms for most of these problems, and identify the hardness of others. |
---|---|
ISSN: | 0925-7721 |
DOI: | 10.1016/j.comgeo.2009.03.007 |