Loading…

Chirp-spreaded OFDM-MFSK with differentially encoded phase for applications in low-power wide-area networks

For the unlicensed frequency bands, long-range wide-area networks (LoRaWAN) is a widespread solution for low-power wide-area networks. The physical layer of LoRaWAN is long range (LoRa) which uses a combination of chirp spread spectrum (CSS) and M-ary frequency-shift keying (M-FSK) for transmission....

Full description

Saved in:
Bibliographic Details
Published in:Computers & electrical engineering 2023-01, Vol.105, p.108477, Article 108477
Main Authors: Thiasiriphet, Thanawat, Teich, Werner G.
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:For the unlicensed frequency bands, long-range wide-area networks (LoRaWAN) is a widespread solution for low-power wide-area networks. The physical layer of LoRaWAN is long range (LoRa) which uses a combination of chirp spread spectrum (CSS) and M-ary frequency-shift keying (M-FSK) for transmission. LoRa is known to be highly robust and well-suited for low-complexity implementation, but the weak aspect is its low spectral efficiency. Orthogonal frequency division multiplexing M-FSK (OFDM-MFSK) is a technique which combines M-FSK with OFDM. The bandwidth is divided into several parallel M-FSK transmissions, i.e., more than one sub-carrier is active at a time. This leads to an increased peak-to-average power ratio of the transmit signal. On the other hand, it allows to combine OFDM-MFSK with differential phase-shift keying (DPSK) to increase the data rate and thus the spectral efficiency. The reception of OFDM-MFSK as well as the DPSK demodulation can be done non-coherently. Therefore, they hold many similar design principles as LoRa. We propose a combination of OFDM-MFSK with differentially encoded phase and CSS. Simulation results show, that LoRa and OFDM-MFSK with CSS show similar performance with respect to power and bandwidth efficiency. Adding DPSK leads to an improved spectral as well as power efficiency. [Display omitted] •Low-complexity non-coherent reception for internet-of-things applications.•Simultaneously improving the peak-to-average power ratio and the data rate.•Enhanced spectral efficiency and data rates for low-power wide-area networks.•Enhanced power efficiency and thus range extension for long-range wide-area networks.
ISSN:0045-7906
1879-0755
DOI:10.1016/j.compeleceng.2022.108477