Loading…

A developed soil reaction model for large- diameter monopiles in sand based on hyperbolic curves

Given the preference as the foundation for offshore wind turbines, this paper focuses on large-diameter monopiles and presents a series of finite element analyses to investigate the response to lateral loads. The contribution of four soil reactions, including distributed lateral load (p-y), distribu...

Full description

Saved in:
Bibliographic Details
Published in:Computers and geotechnics 2024-08, Vol.172, p.106468, Article 106468
Main Authors: Zhang, Xiuyang, Zou, Degao, Liu, Jingmao, Chen, Kai, Li, Xin, Wang, Tianju
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:Given the preference as the foundation for offshore wind turbines, this paper focuses on large-diameter monopiles and presents a series of finite element analyses to investigate the response to lateral loads. The contribution of four soil reactions, including distributed lateral load (p-y), distributed moment (m-θ), and base shear force and base moment, to the lateral resistance encountered by monopiles is quantified. It can be found that apart from the distributed lateral load, the contribution of distributed moment exceeds 14 %, while the proportion of base shear force and base moment is less than 5 % and is considered negligible. This research investigates how the diameter and embedded length of monopiles impact the load-bearing characteristics. A 'p-y + m-θ' model based on the two-parameter soil reaction curve is proposed. This model is not only straightforward and easy to use for engineering design but also considers the effect of rotational deformation on the soil reaction curves. Additionally, a relationship between ultimate lateral soil resistance and relative density is established, leading to an analysis model suitable for sands of various relative densities. Finally, the model effectively predicts the load–displacement relationship for large-diameter monopiles under lateral loads, providing valuable support for monopile design in the offshore wind industry.
ISSN:0266-352X
1873-7633
DOI:10.1016/j.compgeo.2024.106468