Loading…
Measuring the interlaminar fracture toughness of thin carbon fiber/polyamide6 composites using adhesively bonded stiffeners
The present work investigates the interlaminar fracture toughness of a thin unidirectional carbon fiber-reinforced/polyamide6 (CF/PA6) composite laminate. Aluminum (Al) stiffening beams are adhesively bonded on both sides of the thin laminate to avoid undesirable large deformations during the subseq...
Saved in:
Published in: | Composites. Part A, Applied science and manufacturing Applied science and manufacturing, 2024-01, Vol.176, p.107841, Article 107841 |
---|---|
Main Authors: | , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | The present work investigates the interlaminar fracture toughness of a thin unidirectional carbon fiber-reinforced/polyamide6 (CF/PA6) composite laminate. Aluminum (Al) stiffening beams are adhesively bonded on both sides of the thin laminate to avoid undesirable large deformations during the subsequent double cantilever beam (DCB) tests. Experimentation with various surface treatment techniques and different adhesives is presented, from which it is concluded that the mode I fracture toughness of the CF/PA6 laminate is always higher than the fracture toughness of the adhesives used in this work. Consequently, the crack initiates at the Al–composite interface. A finite element (FE) model is proposed, and quantitative results for the fracture toughness of the laminate are provided (e.g., GIc,ini=2.1N/mm). Overall, the study highlights the challenges during the adhesive joining of stiffening beams to CF/PA6 surfaces, ways to improve adhesion, and FE simulation as an alternative to measuring the fracture toughness of such thin laminates. |
---|---|
ISSN: | 1359-835X 1878-5840 |
DOI: | 10.1016/j.compositesa.2023.107841 |