Loading…

K-sample tests for equality of variances of random fuzzy sets

The problem of testing equality of variances often arises when distributions of random variables are compared or linear models between them are considered. The usual tests for variances given normality of the underlying populations are highly non-robust to non-normality and are strongly dependent on...

Full description

Saved in:
Bibliographic Details
Published in:Computational statistics & data analysis 2012-04, Vol.56 (4), p.956-966
Main Authors: Ramos-Guajardo, Ana Belén, Lubiano, María Asunción
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:The problem of testing equality of variances often arises when distributions of random variables are compared or linear models between them are considered. The usual tests for variances given normality of the underlying populations are highly non-robust to non-normality and are strongly dependent on the kurtosis. Some alternative formulations of Levene’s test statistic for testing the homoscedasticity have been shown to be powerful and robust under non-normality. On the basis of Levene’s classical procedure, a test for the equality of variances of k fuzzy-valued random elements is developed. Accordingly, consistent asymptotic and bootstrap tests are established and their empirical behaviour is analyzed by means of extensive simulation studies. In addition, the proposed test is compared with a Bartlett-type test. A case-study illustrating the applicability of the procedure is presented.
ISSN:0167-9473
1872-7352
DOI:10.1016/j.csda.2010.11.025