Loading…

Description length and dimensionality reduction in functional data analysis

The use of description length principles to select an appropriate number of basis functions for functional data is investigated. A flexible definition of the dimension of a random function that is constructed directly from the Karhunen–Loève expansion of the observed process or data generating mecha...

Full description

Saved in:
Bibliographic Details
Published in:Computational statistics & data analysis 2013-02, Vol.58, p.98-113
Main Authors: Poskitt, D.S., Sengarapillai, Arivalzahan
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:The use of description length principles to select an appropriate number of basis functions for functional data is investigated. A flexible definition of the dimension of a random function that is constructed directly from the Karhunen–Loève expansion of the observed process or data generating mechanism is provided. The results obtained show that although the classical, principle component variance decomposition technique will behave in a coherent manner, in general, the dimension chosen by this technique will not be consistent in the conventional sense. Two description length criteria are described. Both of these criteria are proved to be consistent and it is shown that in low noise settings they will identify the true finite dimension of a signal that is embedded in noise. Two examples, one from mass spectroscopy and the other from climatology, are used to illustrate the basic ideas. The application of different forms of the bootstrap for functional data is also explored and used to demonstrate the workings of the theoretical results.
ISSN:0167-9473
1872-7352
DOI:10.1016/j.csda.2011.03.018