Loading…
Nonparametric Bayesian label prediction on a graph
An implementation of a nonparametric Bayesian approach to solving binary classification problems on graphs is described. A hierarchical Bayesian approach with a randomly scaled Gaussian prior is considered. The prior uses the graph Laplacian to take into account the underlying geometry of the graph....
Saved in:
Published in: | Computational statistics & data analysis 2018-04, Vol.120, p.111-131 |
---|---|
Main Authors: | , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | An implementation of a nonparametric Bayesian approach to solving binary classification problems on graphs is described. A hierarchical Bayesian approach with a randomly scaled Gaussian prior is considered. The prior uses the graph Laplacian to take into account the underlying geometry of the graph. A method based on a theoretically optimal prior and a more flexible variant using partial conjugacy are proposed. Two simulated data examples and two examples using real data are used in order to illustrate the proposed methods. |
---|---|
ISSN: | 0167-9473 1872-7352 |
DOI: | 10.1016/j.csda.2017.11.008 |