Loading…
Optimal sequential detection by sparsity likelihood
We propose here a sparsity likelihood stopping rule to detect change-points when there are multiple data streams. It is optimal in the sense of minimizing, asymptotically, the detection delay when the change-points is present in only a small fraction of the data streams. This optimality holds at all...
Saved in:
Published in: | Computational statistics & data analysis 2025-03, Vol.203, p.108089, Article 108089 |
---|---|
Main Authors: | , |
Format: | Article |
Language: | English |
Citations: | Items that this one cites |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | We propose here a sparsity likelihood stopping rule to detect change-points when there are multiple data streams. It is optimal in the sense of minimizing, asymptotically, the detection delay when the change-points is present in only a small fraction of the data streams. This optimality holds at all levels of change-point sparsity. A key contribution of this paper is that we show optimality when there is extreme sparsity. Extreme sparsity refers to the number of data streams with change-points increasing very slowly as the number of data streams goes to infinity. The theoretical results are backed by a numerical study that shows the sparsity likelihood stopping rule performing well at all levels of sparsity. Applications of the stopping rule on non-normal models are also illustrated here. |
---|---|
ISSN: | 0167-9473 |
DOI: | 10.1016/j.csda.2024.108089 |