Loading…
Edge searching weighted graphs
In traditional edge searching one tries to clean all of the edges in a graph employing the least number of searchers. It is assumed that each edge of the graph initially has a weight equal to one. In this paper we modify the problem and introduce the Weighted Edge Searching Problem by considering gr...
Saved in:
Published in: | Discrete Applied Mathematics 2009-04, Vol.157 (8), p.1913-1923 |
---|---|
Main Authors: | , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | In traditional edge searching one tries to clean all of the edges in a graph employing the least number of searchers. It is assumed that each edge of the graph initially has a weight equal to one. In this paper we modify the problem and introduce the
Weighted Edge Searching Problem by considering graphs with arbitrary positive integer weights assigned to its edges. We give bounds on the weighted search number in terms of related graph parameters including pathwidth. We characterize the graphs for which two searchers are sufficient to clear all edges. We show that for every weighted graph the minimum number of searchers needed for a not-necessarily-monotonic weighted edge search strategy is enough for a monotonic weighted edge search strategy, where each edge is cleaned only once. This result proves the NP-completeness of the problem. |
---|---|
ISSN: | 0166-218X 1872-6771 |
DOI: | 10.1016/j.dam.2008.11.011 |