Loading…
Irregularities of maximal k-degenerate graphs
A graph is maximal k-degenerate if every subgraph has a vertex of degree at most k, and the property does not hold if any new edge is added to the graph. A k-tree is a maximal k-degenerate graph that does not contain any induced cycle with more than three edges. We study Albertson irregularity and s...
Saved in:
Published in: | Discrete Applied Mathematics 2023-05, Vol.331, p.70-87 |
---|---|
Main Authors: | , |
Format: | Article |
Language: | English |
Citations: | Items that this one cites |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | A graph is maximal k-degenerate if every subgraph has a vertex of degree at most k, and the property does not hold if any new edge is added to the graph. A k-tree is a maximal k-degenerate graph that does not contain any induced cycle with more than three edges. We study Albertson irregularity and sigma irregularity for a maximal k-degenerate graph of order n≥k+2. Sharp upper bounds on both irregularity indices of maximal k-degenerate graphs are provided and their extremal graphs are characterized as k-stars Kk+K¯n−k. Sharp lower bounds on both irregularity indices of k-trees are obtained and their extremal graphs are characterized as kth powers of paths Pnk. Sharp lower bounds on irregularities of maximal 2-degenerate graphs are also proved. |
---|---|
ISSN: | 0166-218X 1872-6771 |
DOI: | 10.1016/j.dam.2023.01.020 |