Loading…

Budgeting for SDGs: Quantitative methods to assess the potential impacts of public expenditure

Using a novel large-scale dataset that links thousands of expenditure programs to the Sustainable Development Goals for over a decade, we analyze the impact of public expenditure on more than 100 different development indicators. Contrary to the single-dimensional view of evaluating expenditure in t...

Full description

Saved in:
Bibliographic Details
Published in:Development engineering 2023-11, Vol.8, p.1-12, Article 100113
Main Authors: Guariso, Daniele, Castañeda Ramos, Gonzalo, Guerrero, Omar A
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:Using a novel large-scale dataset that links thousands of expenditure programs to the Sustainable Development Goals for over a decade, we analyze the impact of public expenditure on more than 100 different development indicators. Contrary to the single-dimensional view of evaluating expenditure in terms of overall economic growth, we take a multi-dimensional approach. Then, we assess the effectiveness of three quantitative methods for capturing expenditure effects on development: (1) regression analysis, (2) machine learning techniques, and (3) agent computing. We find that, under the existing data and for this particular task, approaches (1) and (2) have difficulties disentangling sector-specific effects (i.e., target effects in the SDG semantics), which is consistent with results in previous empirical research. In contrast, by applying a micro-founded agent-computing model of policy prioritization, we can provide empirical evidence about potential impacts and bottlenecks across a high-dimensional policy space. Our findings suggest that, in the discussion of budgeting for SDGs, one should carefully evaluate the data available, the suitability of data-driven approaches, and consider alternative methods that are richer in terms of incorporating explicit causal mechanisms and scalable to a large set of indicators.
ISSN:2352-7285
2352-7285
DOI:10.1016/j.deveng.2023.100113