Loading…
Complex Lipschitz structures and bundles of complex Clifford modules
Let (M,g) be a pseudo-Riemannian manifold of signature (p,q). We construct mutually quasi-inverse equivalences between the groupoid of bundles of weakly-faithful complex Clifford modules on (M,g) and the groupoid of reduced complex Lipschitz structures on (M,g). As an application, we show that (M,g)...
Saved in:
Published in: | Differential geometry and its applications 2018-12, Vol.61, p.147-169 |
---|---|
Main Authors: | , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | Let (M,g) be a pseudo-Riemannian manifold of signature (p,q). We construct mutually quasi-inverse equivalences between the groupoid of bundles of weakly-faithful complex Clifford modules on (M,g) and the groupoid of reduced complex Lipschitz structures on (M,g). As an application, we show that (M,g) admits a bundle of irreducible complex Clifford modules if and only if it admits either a Spinc(p,q) structure (when p+q is odd) or a Pinc(p,q) structure (when p+q is even). When p−q≡83,4,6,7, we compare with the classification of bundles of irreducible real Clifford modules which we obtained in previous work. The results obtained in this note form a counterpart of the classification of bundles of faithful complex Clifford modules which was previously given by T. Friedrich and A. Trautman. |
---|---|
ISSN: | 0926-2245 1872-6984 |
DOI: | 10.1016/j.difgeo.2018.08.006 |