Loading…
On the fractional chromatic number of monotone self-dual Boolean functions
We compute the exact fractional chromatic number for several classes of monotone self-dual Boolean functions. We characterize monotone self-dual Boolean functions in terms of the optimal value of an LP relaxation of a suitable strengthening of the standard IP formulation for the chromatic number. We...
Saved in:
Published in: | Discrete mathematics 2009-03, Vol.309 (4), p.867-877 |
---|---|
Main Authors: | , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | We compute the exact fractional chromatic number for several classes of monotone self-dual Boolean functions. We characterize monotone self-dual Boolean functions in terms of the optimal value of an LP relaxation of a suitable strengthening of the standard IP formulation for the chromatic number. We also show that determining the self-duality of a monotone Boolean function is equivalent to determining the feasibility of a certain point in a polytope defined implicitly. |
---|---|
ISSN: | 0012-365X 1872-681X |
DOI: | 10.1016/j.disc.2008.01.028 |