Loading…
Non-monochromatic non-rainbow colourings of σ-hypergraphs
One of the most interesting new developments in hypergraph colourings in the last few years has been Voloshin’s notion of colourings of mixed hypergraphs. In this paper we shall study a specific instance of Voloshin’s idea: a non-monochromatic non-rainbow (NMNR) colouring of a hypergraph is a colour...
Saved in:
Published in: | Discrete mathematics 2014-03, Vol.318, p.96-104 |
---|---|
Main Authors: | , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | One of the most interesting new developments in hypergraph colourings in the last few years has been Voloshin’s notion of colourings of mixed hypergraphs. In this paper we shall study a specific instance of Voloshin’s idea: a non-monochromatic non-rainbow (NMNR) colouring of a hypergraph is a colouring of its vertices such that every edge has at least two vertices coloured with different colours (non-monochromatic) and no edge has all of its vertices coloured with distinct colours (non-rainbow). Perhaps the most intriguing phenomenon of such colourings is that a hypergraph can have gaps in its NMNR spectrum, that is, for some k1 |
---|---|
ISSN: | 0012-365X 1872-681X |
DOI: | 10.1016/j.disc.2013.11.016 |