Loading…
On distance integral graphs
The distance eigenvalues of a connected graph G are the eigenvalues of its distance matrix D, and they form the distance spectrum of G. A graph is called distance integral if its distance spectrum consists entirely of integers. We show that no nontrivial tree can be distance integral. We characteriz...
Saved in:
Published in: | Discrete mathematics 2015-10, Vol.338 (10), p.1784-1792 |
---|---|
Main Authors: | , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | The distance eigenvalues of a connected graph G are the eigenvalues of its distance matrix D, and they form the distance spectrum of G. A graph is called distance integral if its distance spectrum consists entirely of integers. We show that no nontrivial tree can be distance integral. We characterize distance integral graphs in the classes of graphs similar to complete split graphs, which, together with relations between graph operations and distance spectra, allows us to exhibit many infinite families of distance integral graphs. |
---|---|
ISSN: | 0012-365X 1872-681X |
DOI: | 10.1016/j.disc.2015.03.004 |