Loading…
Facial entire colouring of plane graphs
Let G=(V,E,F) be a connected, loopless, and bridgeless plane graph, with vertex set V, edge set E, and face set F. For X∈{V,E,F,V∪E,V∪F,E∪F,V∪E∪F}, two elements x and y of X are facially adjacent in G if they are incident, or they are adjacent vertices, or adjacent faces, or facially adjacent edges...
Saved in:
Published in: | Discrete mathematics 2016-02, Vol.339 (2), p.626-631 |
---|---|
Main Authors: | , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | Let G=(V,E,F) be a connected, loopless, and bridgeless plane graph, with vertex set V, edge set E, and face set F. For X∈{V,E,F,V∪E,V∪F,E∪F,V∪E∪F}, two elements x and y of X are facially adjacent in G if they are incident, or they are adjacent vertices, or adjacent faces, or facially adjacent edges (i.e. edges that are consecutive on the boundary walk of a face of G). A k-colouring is facial with respect to X if there is a k-colouring of elements of X such that facially adjacent elements of X receive different colours. We prove that: (i) Every plane graph G=(V,E,F) has a facial 8-colouring with respect to X=V∪E∪F (i.e. a facial entire 8-colouring). Moreover, there is plane graph requiring at least 7 colours in any such colouring. (ii) Every plane graph G=(V,E,F) has a facial 6-colouring with respect to X=E∪F, in other words, a facial edge–face 6-colouring. |
---|---|
ISSN: | 0012-365X 1872-681X |
DOI: | 10.1016/j.disc.2015.09.011 |