Loading…
Optimization of eigenvalue bounds for the independence and chromatic number of graph powers
The kth power of a graph G=(V,E), Gk, is the graph whose vertex set is V and in which two distinct vertices are adjacent if and only if their distance in G is at most k. This article proves various eigenvalue bounds for the independence number and chromatic number of Gk which purely depend on the sp...
Saved in:
Published in: | Discrete mathematics 2022-03, Vol.345 (3), p.112706, Article 112706 |
---|---|
Main Authors: | , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | The kth power of a graph G=(V,E), Gk, is the graph whose vertex set is V and in which two distinct vertices are adjacent if and only if their distance in G is at most k. This article proves various eigenvalue bounds for the independence number and chromatic number of Gk which purely depend on the spectrum of G, together with a method to optimize them. Our bounds for the k-independence number also work for its quantum counterpart, which is not known to be a computable parameter in general, thus justifying the use of integer programming to optimize them. Some of the bounds previously known in the literature follow as a corollary of our main results. Infinite families of graphs where the bounds are sharp are presented as well. |
---|---|
ISSN: | 0012-365X 1872-681X |
DOI: | 10.1016/j.disc.2021.112706 |