Loading…
N6-methyladenosine-modified circular RNA QSOX1 promotes colorectal cancer resistance to anti-CTLA-4 therapy through induction of intratumoral regulatory T cells
Colorectal cancer (CRC) is the 3rd most common cancer worldwide. CircRNAs are promising novel biomarkers for CRC. T regulatory (Treg) cells express the immune checkpoint receptor of cytotoxic T-lymphocyte-associated antigen-4 (CTLA-4) and promote tumor immunological tolerance. We therefore investiga...
Saved in:
Published in: | Drug resistance updates 2022-12, Vol.65, p.100886, Article 100886 |
---|---|
Main Authors: | , , , , , , , , , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | Colorectal cancer (CRC) is the 3rd most common cancer worldwide. CircRNAs are promising novel biomarkers for CRC. T regulatory (Treg) cells express the immune checkpoint receptor of cytotoxic T-lymphocyte-associated antigen-4 (CTLA-4) and promote tumor immunological tolerance. We therefore investigate the biological functions and mechanisms of circQSOX1 in CRC tumorigenesis; involvement of circQSOX1 in promoting Treg cell-mediated CRC immune escape in anti-CTLA-4 therapy.
Bioinformatics analyses were performed for circQSOX1expressions, specific binding sites, and N6-methyladenosine (m6A) motifs of circQSOX1, thatwere further validated with a series of experiments. Functions of circQSOX1 in promoting CRC development, Treg cells-based immune escape, and anti-CTLA-4 therapy response were investigated both in vitro and in vivo.
High circQSOX1 expression was associated with carcinogenesis and poor clinical outcome of CRC patients. METTL3-mediated RNA m6A modification on circQSOX1 could be read by IGF2BP2 in CRC cells. CircQSOX1 promoted CRC development by regulating miR-326/miR-330-5p/PGAM1 axis. CircQSOX1 regulated glycolysis and promoted immune escape of CRC cells, and inhibits anti-CTLA-4 therapy response in CRC patients.
m6A-modified circQSOX1 facilitated CRC tumorigenesis by sponging miR-326 and miR-330-5p to promotes PGAM1 expression, which further promoted CRC immune escape by activating glycolysis and inactivating the anti-CTLA-4 therapy response of CRC. Combined treatment with sh-circQSOX1 and anti-CTLA-4 could be a strategy to overcome Treg cell-mediated CRC immune therapy resistance. |
---|---|
ISSN: | 1368-7646 1532-2084 |
DOI: | 10.1016/j.drup.2022.100886 |