Loading…

Ocean mixing in deep-sea trenches: New insights from the Challenger Deep, Mariana Trench

Reliable very deep shipborne SBE 911plus Conductivity Temperature Depth (CTD) data to within 60m from the bottom and Kongsberg EM122 0.5° × 1° multibeam echosounder data are collected in the Challenger Deep, Mariana Trench. A new position and depth are given for the deepest point in the world's...

Full description

Saved in:
Bibliographic Details
Published in:Deep-sea research. Part I, Oceanographic research papers Oceanographic research papers, 2017-11, Vol.129, p.1-9
Main Authors: van Haren, Hans, Berndt, Christian, Klaucke, Ingo
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:Reliable very deep shipborne SBE 911plus Conductivity Temperature Depth (CTD) data to within 60m from the bottom and Kongsberg EM122 0.5° × 1° multibeam echosounder data are collected in the Challenger Deep, Mariana Trench. A new position and depth are given for the deepest point in the world's ocean. The data provide insight into the interplay between topography and internal waves in the ocean that lead to mixing of the lowermost water masses on Earth. Below 5000m, the vertical density stratification is weak, with a minimum buoyancy frequency N = 1.0 ± 0.6 cpd, cycles per day, between 6500 and 8500m. In that depth range, the average turbulence is coarsely estimated from Thorpe-overturning scales, with limited statistics to be ten times higher than the mean values of dissipation rate εT = 3 ± 2 × 10–11m2s−3 and eddy diffusivity KzT = 2 ± 1.5 × 10−4m2s−1 estimated for the depth range between 10,300 and 10,850m, where N = 2.5 ± 0.6 cpd. Inertial and meridionally directed tidal inertio-gravity waves can propagate between the differently stratified layers. These waves are suggested to be responsible for the observed turbulence. The turbulence values are similar to those recently estimated from CTD and moored observations in the Puerto Rico Trench. Yet, in contrast to the Puerto Rico Trench, seafloor morphology in the Mariana Trench shows up to 500m-high fault scarps on the incoming tectonic plate and a very narrow trench, suggesting that seafloor topography does not play a crucial role for mixing. •Improved deep CTD observations from Challenger Deep, Mariana Trench.•Turbulence estimates show values comparable to Puerto Rico Trench values.•Turbulence generation via inertio-gravity waves.•No crucial role suggested for seafloor topography in deep trench mixing.•High-resolution multibeam echosounder gives new deepest point on Earth estimate.
ISSN:0967-0637
1879-0119
DOI:10.1016/j.dsr.2017.09.003