Loading…

Sea-level change in the Northern Mediterranean Sea from long-period tide gauge time series

The oldest tide gauge observations date back to the 18th century. Although, globally, they are available in limited number, these centuries-old sea level time series are the only data records providing information on the long-period rates of change of the mean ocean surface. Knowledge of the past se...

Full description

Saved in:
Bibliographic Details
Published in:Earth-science reviews 2017-04, Vol.167, p.72-87
Main Authors: Zerbini, Susanna, Raicich, Fabio, Prati, Claudio Maria, Bruni, Sara, Del Conte, Sara, Errico, Maddalena, Santi, Efisio
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:The oldest tide gauge observations date back to the 18th century. Although, globally, they are available in limited number, these centuries-old sea level time series are the only data records providing information on the long-period rates of change of the mean ocean surface. Knowledge of the past sea level behavior can contribute key insights to the understanding of climate change impacts. We highlight the greatest importance of monitoring sea-level changes at all spatial scales, from global to local, using terrestrial and space techniques and outline the physical processes, natural and man-induced, responsible for such changes. In general, tide gauge data are made available through different archiving facilities serving both international and national developments. Tide gauges measure local sea-level relative to a benchmark on land, hence, correctly interpreting these observations is challenging since it demands, among other requirements, a proper knowledge of vertical land motions at the stations. In general, it is not easy to find well documented historical data; moreover, benchmarks were not frequently leveled. For more than two decades, space geodetic techniques, such as GNSS (Global Navigation Satellite System) and InSAR (Interferometric Synthetic Aperture Radar), have provided the opportunity to accurately position points in the surroundings of tide gauge sites, potentially giving rise to a large amount of information. However, despite the availability of these techniques, the evolution of the international efforts aiming at realizing consistent observational infrastructures for sea level networks is undergoing only a slow development. In the Mediterranean area, there are a few centennial tide gauge records. Our study focuses on the time series of Alicante, in Spain, Marseille, in France, Genoa, Marina di Ravenna (formerly Porto Corsini), Venice and Trieste, in Italy. After briefly reviewing the gauge types presently in use for sea level measurements, a comprehensive historical description is given for each time series, which may assist understanding an assessment of the problems these stations have experienced over more than one century of operations. Two Italian stations, Marina di Ravenna and Venice, are affected by both natural and anthropogenic subsidence, the latter was particularly intense during a few decades in the 20th century because of ground fluid withdrawal. For these two stations, we have retrieved leveling data of benchmarks close to
ISSN:0012-8252
1872-6828
DOI:10.1016/j.earscirev.2017.02.009