Loading…
Genetic diversity of Tn916 transposon and its association with tetracycline resistance in Staphylococcus aureus isolates
Staphylococcus aureus, a major pathogen responsible for hospital-acquired infections, poses a severe global health threat due to its virulence and increasing antimicrobial resistance. This study confirmed the presence of the tet(M) gene and the Tn916 transposon in tetracycline-resistant S. aureus is...
Saved in:
Published in: | Ecological genetics and genomics 2024-12, Vol.33, p.100306, Article 100306 |
---|---|
Main Authors: | , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | Staphylococcus aureus, a major pathogen responsible for hospital-acquired infections, poses a severe global health threat due to its virulence and increasing antimicrobial resistance. This study confirmed the presence of the tet(M) gene and the Tn916 transposon in tetracycline-resistant S. aureus isolates. We explored genetic polymorphism by analyzing the positions of Tn916 and Shine-Dalgarno sequences in 30 pathogenic S. aureus isolates. Antibiotic resistance profiles against five antibiotics, including tetracycline, were assessed using disc diffusion methods. PCR was utilized to detect the presence of the tet(M) gene and Tn916 transposon, and sequence sizes between these genetic elements were determined using specific primers. The resulting band patterns were converted into a binary matrix, and a phylogenetic tree was constructed using the Past3 software. All S. aureus isolates examined showed tetracycline resistance and contained the tet(M) gene and Tn916 transposon. Analysis of the distances between Tn916 and Shine-Dalgarno sequences revealed diverse band patterns among the strains. Phylogenetic clustering based on PCR band patterns classified the strains into seven distinct clusters, indicating significant genetic diversity and polymorphism. Molecular docking studies supported our findings, suggesting potential applications in developing effective treatments against S. aureus infections. |
---|---|
ISSN: | 2405-9854 2405-9854 |
DOI: | 10.1016/j.egg.2024.100306 |