Loading…
Technoeconomic analysis of internal combustion engine – organic Rankine cycle cogeneration systems in energy-intensive buildings
Organic Rankine cycle (ORC) systems are a promising technology for converting heat to useful power, especially in combined heat and power (CHP) applications with significant quantities of surplus heat that would otherwise be wasted. Beyond the technical performance of these systems, their economic f...
Saved in:
Published in: | Energy procedia 2019-02, Vol.158, p.2354-2359 |
---|---|
Main Authors: | , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | Organic Rankine cycle (ORC) systems are a promising technology for converting heat to useful power, especially in combined heat and power (CHP) applications with significant quantities of surplus heat that would otherwise be wasted. Beyond the technical performance of these systems, their economic feasibility is crucially important for their wider deployment. In this study, a technoeconomic optimisation of CHP systems is performed in which ORC engines convert heat recovered from internal combustion engines (ICEs), and specifically from both the ICE hot-water output and exhaust-gas stream. The overall aim is to evaluate the impact of the ORC power output and of the components’ design and capital cost on the financial viability of a relevant project, while evaluating a range of candidate working fluids. Results indicate that ORC designs optimised for maximum power output correspond to higher specific investment cost (SIC), with the best performing fluids achieving a SIC of £2100 per kW. In contrast, optimisation for minimum SIC returns values as low as £1700 per kW, or 20% lower. For systems designed and optimised for maximum power, a large fraction of jacket water heat is recovered, while for minimum SIC the utilisation drops to minimise the size and cost of the heat exchangers. The best-performing ORC designs for minimum SIC have discounted payback periods (DPPs) of 4 – 5 years, while those optimised for power output have DPPs of 6 – 7 years, however, the net present values (NPVs) of the latter designs are up to 27% higher than the former. Therefore, there is a trade-off to consider over the project life between high-capacity ORC engines with a high SIC and longer DPP, and designs with minimal SIC but lower power output, shorter DPP and lower NPV. The effect of increasing the amount of hot water required by the building is also analysed, and the ORC engine is shown to be sensitive to this factor for some working fluids. |
---|---|
ISSN: | 1876-6102 1876-6102 |
DOI: | 10.1016/j.egypro.2019.01.283 |