Loading…
Intersection families and Snevily’s conjecture
Let K = { k 1 , k 2 , … , k r } and L = { l 1 , l 2 , … , l s } be sets of nonnegative integers with k i > s − r . Let F = { F 1 , F 2 , … , F m } be a family of subsets of [ n ] with | F i | ∈ K for each i and | F i ∩ F j | ∈ L for any i ≠ j . We prove that | F | ≤ ∑ i = s − r s n − 1 i when we...
Saved in:
Published in: | European journal of combinatorics 2007-04, Vol.28 (3), p.843-847 |
---|---|
Main Authors: | , |
Format: | Article |
Language: | English |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | Let
K
=
{
k
1
,
k
2
,
…
,
k
r
}
and
L
=
{
l
1
,
l
2
,
…
,
l
s
}
be sets of nonnegative integers with
k
i
>
s
−
r
. Let
F
=
{
F
1
,
F
2
,
…
,
F
m
}
be a family of subsets of
[
n
]
with
|
F
i
|
∈
K
for each
i
and
|
F
i
∩
F
j
|
∈
L
for any
i
≠
j
. We prove that
|
F
|
≤
∑
i
=
s
−
r
s
n
−
1
i
when we have the conditions that
|
F
i
|
∉
L
and
k
i
’s are consecutive. We also prove the same bound under the condition
⋂
i
=
1
m
F
i
≠
0̸
instead of the above conditions. Finally, an observation gives us a bound of
n
⌈
n
2
⌉
on
|
F
|
when
K
∩
L
=
0̸
. |
---|---|
ISSN: | 0195-6698 1095-9971 |
DOI: | 10.1016/j.ejc.2005.11.002 |