Loading…

On the commutative quotient of Fomin–Kirillov algebras

The Fomin–Kirillov algebra En is a noncommutative algebra with a generator for each edge of the complete graph on n vertices. For any graph G on n vertices, let EG be the subalgebra of En generated by the edges in G. We show that the commutative quotient of EG is isomorphic to the Orlik–Terao algebr...

Full description

Saved in:
Bibliographic Details
Published in:European journal of combinatorics 2016-05, Vol.54, p.65-75
Main Author: Liu, Ricky Ini
Format: Article
Language:English
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:The Fomin–Kirillov algebra En is a noncommutative algebra with a generator for each edge of the complete graph on n vertices. For any graph G on n vertices, let EG be the subalgebra of En generated by the edges in G. We show that the commutative quotient of EG is isomorphic to the Orlik–Terao algebra of G. As a consequence, the Hilbert series of this quotient is given by (−t)nχG(−t−1), where χG is the chromatic polynomial of G. We also give a reduction algorithm for the graded components of EG that do not vanish in the commutative quotient and show that their structure is described by the combinatorics of noncrossing forests.
ISSN:0195-6698
1095-9971
DOI:10.1016/j.ejc.2015.12.003