Loading…
MSO undecidability for hereditary classes of unbounded clique-width
Seese’s conjecture for finite graphs states that monadic second-order logic (MSO) is undecidable on all graph classes of unbounded clique-width. We show that to establish this it would suffice to show that grids of unbounded size can be interpreted in two families of graph classes: minimal hereditar...
Saved in:
Published in: | European journal of combinatorics 2025-01, Vol.123, p.103700, Article 103700 |
---|---|
Main Authors: | , |
Format: | Article |
Language: | English |
Citations: | Items that this one cites |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | Seese’s conjecture for finite graphs states that monadic second-order logic (MSO) is undecidable on all graph classes of unbounded clique-width. We show that to establish this it would suffice to show that grids of unbounded size can be interpreted in two families of graph classes: minimal hereditary classes of unbounded clique-width; and antichains of unbounded clique-width under the induced subgraph relation. We explore all the currently known classes of the former category and establish that grids of unbounded size can indeed be interpreted in them. |
---|---|
ISSN: | 0195-6698 |
DOI: | 10.1016/j.ejc.2023.103700 |