Loading…

The asymptotic of off-diagonal online Ramsey numbers for paths

We prove that for every k≥10, the online Ramsey number for paths Pk and Pn satisfies r̃(Pk,Pn)≥53n+k9−4, matching up to a linear term in k the upper bound recently obtained by Bednarska-Bzdęga (2024). In particular, this implies limn→∞r̃(Pk,Pn)n=53, whenever 10≤k=o(n), disproving a conjecture by Cym...

Full description

Saved in:
Bibliographic Details
Published in:European journal of combinatorics 2024-12, Vol.122, p.104032, Article 104032
Main Authors: Mond, Adva, Portier, Julien
Format: Article
Language:English
Citations: Items that this one cites
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:We prove that for every k≥10, the online Ramsey number for paths Pk and Pn satisfies r̃(Pk,Pn)≥53n+k9−4, matching up to a linear term in k the upper bound recently obtained by Bednarska-Bzdęga (2024). In particular, this implies limn→∞r̃(Pk,Pn)n=53, whenever 10≤k=o(n), disproving a conjecture by Cyman et al. (2015).
ISSN:0195-6698
DOI:10.1016/j.ejc.2024.104032